1 DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart
herminebrenner edited this page 2025-02-20 09:28:59 +08:00
This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.


Today, we are excited to reveal that DeepSeek R1 distilled Llama and Qwen models are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now deploy DeepSeek AI's first-generation frontier design, DeepSeek-R1, in addition to the distilled variations varying from 1.5 to 70 billion criteria to develop, experiment, and properly scale your generative AI concepts on AWS.

In this post, we demonstrate how to begin with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow similar actions to deploy the distilled variations of the designs also.

Overview of DeepSeek-R1

DeepSeek-R1 is a big language design (LLM) developed by DeepSeek AI that utilizes reinforcement finding out to enhance reasoning capabilities through a multi-stage training process from a DeepSeek-V3-Base foundation. A key identifying feature is its support knowing (RL) step, which was used to refine the model's actions beyond the basic pre-training and fine-tuning process. By incorporating RL, DeepSeek-R1 can adapt more efficiently to user feedback and goals, ultimately improving both relevance and clarity. In addition, DeepSeek-R1 employs a chain-of-thought (CoT) approach, indicating it's equipped to break down intricate queries and reason through them in a detailed way. This assisted thinking procedure permits the design to produce more precise, transparent, and detailed answers. This model integrates RL-based fine-tuning with CoT abilities, aiming to create structured responses while focusing on interpretability and user interaction. With its wide-ranging abilities DeepSeek-R1 has actually captured the industry's attention as a versatile text-generation model that can be integrated into different workflows such as agents, sensible thinking and data interpretation tasks.

DeepSeek-R1 utilizes a Mixture of Experts (MoE) architecture and is 671 billion criteria in size. The MoE architecture permits activation of 37 billion criteria, enabling effective inference by routing inquiries to the most pertinent expert "clusters." This approach permits the model to focus on various problem domains while maintaining total effectiveness. DeepSeek-R1 needs at least 800 GB of HBM memory in FP8 format for inference. In this post, we will utilize an ml.p5e.48 xlarge circumstances to deploy the design. ml.p5e.48 xlarge comes with 8 Nvidia H200 GPUs supplying 1128 GB of GPU memory.

DeepSeek-R1 distilled designs bring the thinking abilities of the main R1 design to more effective architectures based on popular open models like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation describes a procedure of training smaller, more effective models to simulate the habits and reasoning patterns of the larger DeepSeek-R1 design, using it as a teacher design.

You can release DeepSeek-R1 design either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging model, we recommend deploying this design with guardrails in location. In this blog site, we will use Amazon Bedrock Guardrails to introduce safeguards, prevent damaging material, and evaluate models against essential security requirements. At the time of composing this blog site, for DeepSeek-R1 releases on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports only the ApplyGuardrail API. You can produce several guardrails tailored to various usage cases and apply them to the DeepSeek-R1 design, improving user experiences and standardizing safety controls across your generative AI applications.

Prerequisites

To deploy the DeepSeek-R1 design, you need access to an ml.p5e circumstances. To inspect if you have quotas for P5e, open the Service Quotas console and under AWS Services, select Amazon SageMaker, and validate you're using ml.p5e.48 xlarge for endpoint usage. Make certain that you have at least one ml.P5e.48 xlarge instance in the AWS Region you are releasing. To request a limit boost, develop a limit increase request and reach out to your account team.

Because you will be releasing this model with Amazon Bedrock Guardrails, make certain you have the appropriate AWS Identity and Gain Access To Management (IAM) consents to utilize Amazon Bedrock Guardrails. For instructions, see Set up authorizations to utilize guardrails for content filtering.

Implementing guardrails with the ApplyGuardrail API

Amazon Bedrock Guardrails allows you to present safeguards, avoid hazardous material, and evaluate designs against key security requirements. You can execute precaution for the DeepSeek-R1 model using the Amazon Bedrock ApplyGuardrail API. This allows you to apply guardrails to evaluate user inputs and model actions deployed on Amazon Bedrock Marketplace and . You can produce a guardrail using the Amazon Bedrock console or the API. For the example code to develop the guardrail, see the GitHub repo.

The general flow involves the following steps: First, the system gets an input for the design. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent out to the design for inference. After getting the model's output, another guardrail check is applied. If the output passes this last check, it's returned as the result. However, if either the input or output is stepped in by the guardrail, a message is returned suggesting the nature of the intervention and whether it took place at the input or output stage. The examples showcased in the following areas show inference utilizing this API.

Deploy DeepSeek-R1 in Amazon Bedrock Marketplace

Amazon Bedrock Marketplace provides you access to over 100 popular, emerging, and specialized structure designs (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, complete the following actions:

1. On the Amazon Bedrock console, choose Model brochure under Foundation models in the navigation pane. At the time of writing this post, you can utilize the InvokeModel API to invoke the model. It doesn't support Converse APIs and other Amazon Bedrock tooling. 2. Filter for DeepSeek as a company and select the DeepSeek-R1 design.

The model detail page offers vital details about the model's capabilities, prices structure, and execution standards. You can discover detailed use instructions, consisting of sample API calls and code snippets for integration. The model supports various text generation tasks, including content production, code generation, and question answering, utilizing its reinforcement discovering optimization and CoT reasoning abilities. The page also consists of release alternatives and licensing details to assist you begin with DeepSeek-R1 in your applications. 3. To begin utilizing DeepSeek-R1, select Deploy.

You will be prompted to configure the release details for DeepSeek-R1. The design ID will be pre-populated. 4. For Endpoint name, get in an endpoint name (between 1-50 alphanumeric characters). 5. For Variety of circumstances, go into a variety of instances (in between 1-100). 6. For Instance type, select your circumstances type. For ideal efficiency with DeepSeek-R1, a GPU-based instance type like ml.p5e.48 xlarge is suggested. Optionally, you can configure advanced security and infrastructure settings, consisting of virtual private cloud (VPC) networking, service function authorizations, and encryption settings. For the majority of utilize cases, the default settings will work well. However, for production releases, you might want to review these settings to line up with your organization's security and compliance requirements. 7. Choose Deploy to start using the model.

When the release is total, you can evaluate DeepSeek-R1's abilities straight in the Amazon Bedrock play area. 8. Choose Open in playground to access an interactive user interface where you can experiment with various triggers and adjust design specifications like temperature level and optimum length. When using R1 with Bedrock's InvokeModel and Playground Console, use DeepSeek's chat template for optimal results. For example, content for inference.

This is an outstanding method to explore the model's reasoning and text generation capabilities before integrating it into your applications. The play ground offers instant feedback, helping you understand how the design reacts to different inputs and letting you tweak your triggers for ideal outcomes.

You can quickly evaluate the design in the playground through the UI. However, to invoke the released model programmatically with any Amazon Bedrock APIs, you need to get the endpoint ARN.

Run reasoning utilizing guardrails with the released DeepSeek-R1 endpoint

The following code example demonstrates how to carry out reasoning using a released DeepSeek-R1 model through Amazon Bedrock using the invoke_model and ApplyGuardrail API. You can produce a guardrail utilizing the Amazon Bedrock console or the API. For the example code to develop the guardrail, see the GitHub repo. After you have actually produced the guardrail, use the following code to carry out guardrails. The script initializes the bedrock_runtime client, configures inference parameters, and sends out a request to create text based upon a user timely.

Deploy DeepSeek-R1 with SageMaker JumpStart

SageMaker JumpStart is an artificial intelligence (ML) center with FMs, integrated algorithms, and prebuilt ML services that you can release with simply a few clicks. With SageMaker JumpStart, you can tailor pre-trained designs to your usage case, with your information, and deploy them into production using either the UI or SDK.

Deploying DeepSeek-R1 model through SageMaker JumpStart provides two convenient approaches: using the intuitive SageMaker JumpStart UI or carrying out programmatically through the SageMaker Python SDK. Let's explore both techniques to help you select the technique that best fits your needs.

Deploy DeepSeek-R1 through SageMaker JumpStart UI

Complete the following steps to release DeepSeek-R1 utilizing SageMaker JumpStart:

1. On the SageMaker console, pick Studio in the navigation pane. 2. First-time users will be triggered to create a domain. 3. On the SageMaker Studio console, select JumpStart in the navigation pane.

The model internet browser shows available models, with details like the provider name and model abilities.

4. Look for DeepSeek-R1 to view the DeepSeek-R1 design card. Each model card shows essential details, consisting of:

- Model name

  • Provider name
  • Task category (for example, Text Generation). Bedrock Ready badge (if suitable), indicating that this design can be signed up with Amazon Bedrock, permitting you to utilize Amazon Bedrock APIs to conjure up the model

    5. Choose the design card to view the design details page.

    The model details page includes the following details:

    - The model name and provider details. Deploy button to deploy the model. About and Notebooks tabs with detailed details

    The About tab includes crucial details, such as:

    - Model description.
  • License details.
  • Technical requirements. - Usage guidelines

    Before you deploy the design, it's recommended to review the design details and license terms to verify compatibility with your use case.

    6. Choose Deploy to proceed with deployment.

    7. For Endpoint name, use the immediately created name or create a customized one.
  1. For Instance type ¸ pick an instance type (default: ml.p5e.48 xlarge).
  2. For Initial circumstances count, enter the variety of instances (default: 1). Selecting appropriate circumstances types and counts is crucial for expense and efficiency optimization. Monitor your implementation to adjust these settings as needed.Under Inference type, Real-time inference is picked by default. This is optimized for sustained traffic and low latency.
  3. Review all setups for precision. For this design, we strongly advise sticking to SageMaker JumpStart default settings and making certain that network isolation remains in place.
  4. Choose Deploy to deploy the design.

    The deployment process can take a number of minutes to finish.

    When release is complete, your endpoint status will change to InService. At this point, the design is all set to accept reasoning requests through the endpoint. You can monitor the implementation development on the SageMaker console Endpoints page, which will display relevant metrics and status details. When the implementation is total, you can invoke the model using a SageMaker runtime customer and integrate it with your applications.

    Deploy DeepSeek-R1 utilizing the SageMaker Python SDK

    To get going with DeepSeek-R1 utilizing the SageMaker Python SDK, you will need to install the SageMaker Python SDK and make certain you have the needed AWS permissions and environment setup. The following is a detailed code example that shows how to deploy and utilize DeepSeek-R1 for inference programmatically. The code for releasing the model is supplied in the Github here. You can clone the notebook and run from SageMaker Studio.

    You can run extra requests against the predictor:

    Implement guardrails and run inference with your SageMaker JumpStart predictor

    Similar to Amazon Bedrock, you can likewise use the ApplyGuardrail API with your SageMaker JumpStart predictor. You can create a guardrail utilizing the Amazon Bedrock console or the API, and implement it as revealed in the following code:

    Clean up

    To avoid unwanted charges, finish the steps in this section to clean up your resources.

    Delete the Amazon Bedrock Marketplace implementation

    If you released the model using Amazon Bedrock Marketplace, total the following steps:

    1. On the Amazon Bedrock console, under Foundation models in the navigation pane, select Marketplace releases.
  5. In the Managed implementations section, find the endpoint you want to erase.
  6. Select the endpoint, and on the Actions menu, choose Delete.
  7. Verify the endpoint details to make certain you're erasing the correct release: 1. Endpoint name.
  8. Model name.
  9. Endpoint status

    Delete the SageMaker JumpStart predictor

    The SageMaker JumpStart model you released will sustain expenses if you leave it running. Use the following code to delete the endpoint if you wish to stop sustaining charges. For more details, see Delete Endpoints and Resources.

    Conclusion

    In this post, we explored how you can access and release the DeepSeek-R1 model using Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to get going. For more details, describe Use Amazon Bedrock tooling with Amazon SageMaker JumpStart designs, SageMaker JumpStart pretrained models, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and wavedream.wiki Getting started with Amazon SageMaker JumpStart.

    About the Authors

    Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He assists emerging generative AI companies develop ingenious solutions utilizing AWS services and sped up compute. Currently, he is focused on developing strategies for fine-tuning and optimizing the reasoning performance of large language designs. In his leisure time, Vivek delights in hiking, viewing motion pictures, and trying different cuisines.

    Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science team at AWS. His location of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer Science and Bioinformatics.

    Jonathan Evans is a Professional Solutions Architect dealing with generative AI with the Third-Party Model Science group at AWS.

    Banu Nagasundaram leads product, engineering, and strategic partnerships for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI hub. She is enthusiastic about constructing solutions that assist customers accelerate their AI journey and unlock business worth.