WeChatBot/bot.py

260 lines
9.9 KiB
Python
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import json
from zhipuai import ZhipuAI
import re
from diffusers import DiffusionPipeline, StableDiffusionPipeline, DPMSolverMultistepScheduler
from transformers import AutoTokenizer, AutoModel
import torch
import argparse
import flask
import typing
import traceback
ps = argparse.ArgumentParser()
ps.add_argument("--config", default="config.json", help="Configuration file")
args = ps.parse_args()
with open(args.config) as f:
config_json = json.load(f)
class GlobalData:
# OPENAI_ORGID = config_json[""]
OPENAI_APIKEY = config_json["OpenAI-GPT"]["OpenAI-Key"]
OPENAI_MODEL = config_json["OpenAI-GPT"]["GPT-Model"]
OPENAI_MODEL_TEMPERATURE = int(config_json["OpenAI-GPT"]["Temperature"])
OPENAI_MODEL_MAXTOKENS = min(2048, int(config_json["OpenAI-GPT"]["MaxTokens"]))
CHATGLM_MODEL = config_json["ChatGLM"]["GPT-Model"]
context_for_users = {}
context_for_groups = {}
GENERATE_PICTURE_ARG_PAT = re.compile("(\(|)([0-9]+)[ \n\t]+([0-9]+)[ \n\t]+([0-9]+)(\)|)")
GENERATE_PICTURE_ARG_PAT2 = re.compile("(\(|)([0-9]+)[ \n\t]+([0-9]+)[ \n\t]+([0-9]+)[ \n\t]+([0-9]+)(\)|)")
GENERATE_PICTURE_NEG_PROMPT_DELIMETER = re.compile("\n+")
GENERATE_PICTURE_MAX_ITS = 200 # 最大迭代次数
USE_OPENAIGPT = False
USE_CHATGLM = False
if config_json["OpenAI-GPT"]["Enable"]:
print(f"Use OpenAI GPT Model({GlobalData.OPENAI_MODEL}).")
USE_OPENAIGPT = True
elif config_json["ChatGLM"]["Enable"]:
print(f"Use ChatGLM({GlobalData.CHATGLM_MODEL}) as GPT-Model.")
chatglm_tokenizer = AutoTokenizer.from_pretrained(GlobalData.CHATGLM_MODEL, trust_remote_code=True)
chatglm_model = AutoModel.from_pretrained(GlobalData.CHATGLM_MODEL, trust_remote_code=True)
if hasattr(torch.backends, "mps") and torch.backends.mps.is_available():
chatglm_model = chatglm_model.to('mps')
elif torch.cuda.is_available():
chatglm_model = chatglm_model.to('cuda')
chatglm_model = chatglm_model.eval()
USE_CHATGLM = True
app = flask.Flask(__name__)
# 这个用于放行生成的任何图片替换掉默认的NSFW检查器公共场合慎重使用
def run_safety_nochecker(image, device, dtype):
print("警告:屏蔽了内容安全性检查,可能会产生有害内容")
return image, None
sd_args = {
"pretrained_model_name_or_path": config_json["Diffusion"]["Diffusion-Model"],
"torch_dtype": (torch.float16 if config_json["Diffusion"].get("UseFP16", True) else torch.float32)
}
sd_pipe = StableDiffusionPipeline.from_pretrained(**sd_args)
sd_pipe.scheduler = DPMSolverMultistepScheduler.from_config(sd_pipe.scheduler.config)
if config_json["Diffusion"]["NoNSFWChecker"]:
setattr(sd_pipe, "run_safety_checker", run_safety_nochecker)
if hasattr(torch.backends, "mps") and torch.backends.mps.is_available():
sd_pipe = sd_pipe.to("mps")
elif torch.cuda.is_available():
sd_pipe = sd_pipe.to("cuda")
GPT_SUCCESS = 0
GPT_NORESULT = 1
GPT_ERROR = 2
def CallOpenAIGPT(prompts: typing.List[str]):
try:
res = openai.ChatCompletion.create(
model=config_json["OpenAI-GPT"]["GPT-Model"],
messages=prompts
)
if len(res["choices"]) > 0:
return (GPT_SUCCESS, res["choices"][0]["message"]["content"].strip())
else:
return (GPT_NORESULT, "")
except openai.InvalidRequestError as e:
return (GPT_ERROR, e)
except Exception as e:
traceback.print_exception(e)
return (GPT_ERROR, str(e))
def CallChatGLM(msg, history: typing.List[str]):
try:
resp, hist = chatglm_model.chat(chatglm_tokenizer, msg, history=history)
if isinstance(resp, tuple):
resp = resp[0]
return (GPT_SUCCESS, resp)
except Exception as e:
return (GPT_ERROR, str(e))
def add_context(uid: str, is_user: bool, msg: str):
if not uid in GlobalData.context_for_users:
GlobalData.context_for_users[uid] = []
if USE_OPENAIGPT:
GlobalData.context_for_users[uid].append({
"role": "system",
"content": msg
}
)
elif USE_CHATGLM:
GlobalData.context_for_users[uid].append(msg)
def get_context(uid: str):
if not uid in GlobalData.context_for_users:
GlobalData.context_for_users[uid] = []
return GlobalData.context_for_users[uid]
@app.route("/chat_clear", methods=['POST'])
def app_chat_clear():
data = json.loads(flask.globals.request.get_data())
GlobalData.context_for_users[data["user_id"]] = []
print(f"Cleared context for {data['user_id']}")
return ""
@app.route("/chat", methods=['POST'])
def app_chat():
data = json.loads(flask.globals.request.get_data())
# print(data)
uid = data["user_id"]
if not data["text"][-1] in ['?', '', '.', '', ',', '', '!', '']:
data["text"] += ""
# 使用ZhipuAI库调用模型生成回复
client = ZhipuAI(api_key="73bdeed728677bc80efc6956478a2315.VerNWJMCwN9L5gTi") # 请填写您自己的APIKey
response = client.chat.completions.create(
model="glm-4", # 请填写您要调用的模型名称
messages=[
{"role": "user", "content": data["text"]},
],
)
# 获取模型的回复
resp = response.choices[0].message.content
if resp:
return json.dumps({"user_id": data["user_id"], "text": resp, "error": False, "error_msg": ""})
else:
return json.dumps({"user_id": data["user_id"], "text": "", "error": True, "error_msg": "模型未返回回复"})
@app.route("/draw", methods=['POST'])
def app_draw():
data = json.loads(flask.globals.request.get_data())
prompt = data["prompt"]
i = 0
for i in range(len(prompt)):
if prompt[i] == ':' or prompt[i] == '':
break
if i == len(prompt):
return json.dumps({"user_name": data["user_name"], "filenames": [], "error": True,
"error_msg": "格式不对正确的格式是生成图片Prompt 或者 生成图片(宽 高 迭代次数 [图片最大数量(缺省1)])Prompt"})
match_args = re.match(GlobalData.GENERATE_PICTURE_ARG_PAT2, prompt[:i])
if not match_args is None:
W = int(match_args.group(2))
H = int(match_args.group(3))
ITS = int(match_args.group(4))
NUM_PIC = int(match_args.group(5))
else:
match_args = re.match(GlobalData.GENERATE_PICTURE_ARG_PAT, prompt[:i])
if not match_args is None:
W = int(match_args.group(2))
H = int(match_args.group(3))
ITS = int(match_args.group(4))
NUM_PIC = 1
else:
if len(prompt[:i].strip()) != 0:
return json.dumps({"user_name": data["user_name"], "filenames": [], "error": True,
"error_msg": "格式不对正确的格式是生成图片Prompt 或者 生成图片(宽 高 迭代次数 [图片最大数量(缺省1)])Prompt"})
else:
W = 768
H = 768
ITS = config_json.get('DefaultDiffutionIterations', 20)
NUM_PIC = 1
if W > 2500 or H > 2500:
return json.dumps({"user_name": data["user_name"], "filenames": [], "error": True,
"error_msg": "你要求的图片太大了,我不干了~"})
if ITS > GlobalData.GENERATE_PICTURE_MAX_ITS:
return json.dumps({"user_name": data["user_name"], "filenames": [], "error": True,
"error_msg": f"迭代次数太多了,不要超过{GlobalData.GENERATE_PICTURE_MAX_ITS}"})
prompt = prompt[(i + 1):].strip()
prompts = re.split(GlobalData.GENERATE_PICTURE_NEG_PROMPT_DELIMETER, prompt)
prompt = prompts[0]
neg_prompt = None
if len(prompts) > 1:
neg_prompt = prompts[1]
print(f"Generating {NUM_PIC} picture(s) with prompt = {prompt} , negative prompt = {neg_prompt}")
try:
if NUM_PIC > 1 and torch.backends.mps.is_available(): # Apple silicon上的bughttps://github.com/huggingface/diffusers/issues/363
return json.dumps({"user_name": data["user_name"], "filenames": [], "error": True,
"error_msg": "单prompt生成多张图像在Apple silicon上无法实现相关讨论参考https://github.com/huggingface/diffusers/issues/363"})
images = sd_pipe(prompt=prompt, negative_prompt=neg_prompt, width=W, height=H, num_inference_steps=ITS,
num_images_per_prompt=NUM_PIC).images[:NUM_PIC]
if len(images) == 0:
return json.dumps(
{"user_name": data["user_name"], "filenames": [], "error": True, "error_msg": "没有产生任何图像"})
filenames = []
for i, img in enumerate(images):
img.save(f"latest-{i}.png")
filenames.append(f"latest-{i}.png")
return json.dumps({"user_name": data["user_name"], "filenames": filenames, "error": False, "error_msg": ""})
except Exception as e:
return json.dumps({"user_name": data["user_name"], "filenames": [], "error": True, "error_msg": str(e)})
@app.route("/info", methods=['POST', 'GET'])
def app_info():
return "\n".join(
[f"GPT模型{config_json['OpenAI-GPT']['GPT-Model'] if USE_OPENAIGPT else config_json['ChatGLM']['GPT-Model']}",
f"Diffusion模型{config_json['Diffusion']['Diffusion-Model']}",
"默认图片规格768x768 RGB三通道", "Diffusion默认迭代轮数20",
f"使用半精度浮点数 : {'' if config_json['Diffusion'].get('UseFP16', True) else ''}",
f"屏蔽NSFW检查{'' if config_json['Diffusion']['NoNSFWChecker'] else ''}",
"清空上下文指令:重置上下文",
"生成图片指令:生成图片(宽 高 迭代次数):正面提示 换行写负面提示,其中(宽 高 迭代次数)和换行写的负面提示都是可以省略的"])
if __name__ == "__main__":
if USE_OPENAIGPT:
openai.api_key = GlobalData.OPENAI_APIKEY
app.run(host="0.0.0.0", port=11111)