46 lines
1.4 KiB
Python
46 lines
1.4 KiB
Python
import json
|
||
|
||
from zhipuai import ZhipuAI
|
||
import flask
|
||
|
||
# client = ZhipuAI(api_key="73bdeed728677bc80efc6956478a2315.VerNWJMCwN9L5gTi") # 请填写您自己的APIKey
|
||
# response = client.chat.completions.create(
|
||
# model="glm-4", # 请填写您要调用的模型名称
|
||
# messages=[
|
||
# {"role": "user", "content": "你好"},
|
||
# ],
|
||
# )
|
||
# print(response.choices[0].message)
|
||
app = flask.Flask(__name__)
|
||
|
||
|
||
@app.route("/chat", methods=['POST'])
|
||
def app_chat():
|
||
data = json.loads(flask.globals.request.get_data())
|
||
# print(data)
|
||
uid = data["user_id"]
|
||
if not data["text"][-1] in ['?', '?', '.', '。', ',', ',', '!', '!']:
|
||
data["text"] += "。"
|
||
data["text"] += ""
|
||
|
||
# 使用ZhipuAI库调用模型生成回复
|
||
client = ZhipuAI(api_key="73bdeed728677bc80efc6956478a2315.VerNWJMCwN9L5gTi") # 请填写您自己的APIKey
|
||
response = client.chat.completions.create(
|
||
model="glm-4-flash", # 请填写您要调用的模型名称
|
||
messages=[
|
||
{"role": "user", "content": data["text"]},
|
||
],
|
||
)
|
||
|
||
# 获取模型的回复
|
||
resp = response.choices[0].message.content
|
||
|
||
if resp:
|
||
return json.dumps({"user_id": data["user_id"], "text": resp, "error": False, "error_msg": ""})
|
||
else:
|
||
return json.dumps({"user_id": data["user_id"], "text": "", "error": True, "error_msg": "模型未返回回复"})
|
||
|
||
|
||
if __name__ == '__main__':
|
||
app.run(host="0.0.0.0", port=11111)
|