完成文生文AI接口,并将消息处理从同步改为异步

This commit is contained in:
Cool 2024-11-08 18:15:08 +08:00
parent 0f0a8d4da8
commit 6c67cb5f2a
4 changed files with 249 additions and 181 deletions

1
.gitignore vendored
View File

@ -5,3 +5,4 @@ latest*.png
.DS_Store
anything-v4.0
chatglm2-6b
/.idea/

47
ai.py Normal file
View File

@ -0,0 +1,47 @@
import json
from zhipuai import ZhipuAI
import flask
# client = ZhipuAI(api_key="73bdeed728677bc80efc6956478a2315.VerNWJMCwN9L5gTi") # 请填写您自己的APIKey
# response = client.chat.completions.create(
# model="glm-4", # 请填写您要调用的模型名称
# messages=[
# {"role": "user", "content": "你好"},
# ],
# )
# print(response.choices[0].message)
app = flask.Flask(__name__)
@app.route("/chat", methods=['POST'])
def app_chat():
data = json.loads(flask.globals.request.get_data())
# print(data)
uid = data["user_id"]
if not data["text"][-1] in ['?', '', '.', '', ',', '', '!', '']:
data["text"] += ""
# 使用ZhipuAI库调用模型生成回复
client = ZhipuAI(api_key="73bdeed728677bc80efc6956478a2315.VerNWJMCwN9L5gTi") # 请填写您自己的APIKey
response = client.chat.completions.create(
model="glm-4-flash", # 请填写您要调用的模型名称
messages=[
{"role": "user", "content": data["text"]},
],
)
# 获取模型的回复
resp = response.choices[0].message.content
if resp:
return json.dumps({"user_id": data["user_id"], "text": resp, "error": False, "error_msg": ""})
else:
return json.dumps({"user_id": data["user_id"], "text": "", "error": True, "error_msg": "模型未返回回复"})
if __name__ == '__main__':
app.run(host="0.0.0.0", port=11111)

102
bot.py
View File

@ -1,5 +1,6 @@
import json
import openai
from zhipuai import ZhipuAI
import re
from diffusers import DiffusionPipeline, StableDiffusionPipeline, DPMSolverMultistepScheduler
from transformers import AutoTokenizer, AutoModel
@ -16,6 +17,7 @@ args = ps.parse_args()
with open(args.config) as f:
config_json = json.load(f)
class GlobalData:
# OPENAI_ORGID = config_json[""]
OPENAI_APIKEY = config_json["OpenAI-GPT"]["OpenAI-Key"]
@ -31,7 +33,8 @@ class GlobalData:
GENERATE_PICTURE_ARG_PAT = re.compile("(\(|)([0-9]+)[ \n\t]+([0-9]+)[ \n\t]+([0-9]+)(\)|)")
GENERATE_PICTURE_ARG_PAT2 = re.compile("(\(|)([0-9]+)[ \n\t]+([0-9]+)[ \n\t]+([0-9]+)[ \n\t]+([0-9]+)(\)|)")
GENERATE_PICTURE_NEG_PROMPT_DELIMETER = re.compile("\n+")
GENERATE_PICTURE_MAX_ITS = 200 #最大迭代次数
GENERATE_PICTURE_MAX_ITS = 200 # 最大迭代次数
USE_OPENAIGPT = False
USE_CHATGLM = False
@ -52,14 +55,16 @@ elif config_json["ChatGLM"]["Enable"]:
app = flask.Flask(__name__)
# 这个用于放行生成的任何图片替换掉默认的NSFW检查器公共场合慎重使用
def run_safety_nochecker(image, device, dtype):
print("警告:屏蔽了内容安全性检查,可能会产生有害内容")
return image, None
sd_args = {
"pretrained_model_name_or_path" : config_json["Diffusion"]["Diffusion-Model"],
"torch_dtype" : (torch.float16 if config_json["Diffusion"].get("UseFP16", True) else torch.float32)
"pretrained_model_name_or_path": config_json["Diffusion"]["Diffusion-Model"],
"torch_dtype": (torch.float16 if config_json["Diffusion"].get("UseFP16", True) else torch.float32)
}
sd_pipe = StableDiffusionPipeline.from_pretrained(**sd_args)
@ -76,7 +81,8 @@ GPT_SUCCESS = 0
GPT_NORESULT = 1
GPT_ERROR = 2
def CallOpenAIGPT(prompts : typing.List[str]):
def CallOpenAIGPT(prompts: typing.List[str]):
try:
res = openai.ChatCompletion.create(
model=config_json["OpenAI-GPT"]["GPT-Model"],
@ -92,7 +98,8 @@ def CallOpenAIGPT(prompts : typing.List[str]):
traceback.print_exception(e)
return (GPT_ERROR, str(e))
def CallChatGLM(msg, history : typing.List[str]):
def CallChatGLM(msg, history: typing.List[str]):
try:
resp, hist = chatglm_model.chat(chatglm_tokenizer, msg, history=history)
if isinstance(resp, tuple):
@ -101,19 +108,21 @@ def CallChatGLM(msg, history : typing.List[str]):
except Exception as e:
return (GPT_ERROR, str(e))
def add_context(uid : str, is_user : bool, msg : str):
def add_context(uid: str, is_user: bool, msg: str):
if not uid in GlobalData.context_for_users:
GlobalData.context_for_users[uid] = []
if USE_OPENAIGPT:
GlobalData.context_for_users[uid].append({
"role" : "system",
"content" : msg
"role": "system",
"content": msg
}
)
elif USE_CHATGLM:
GlobalData.context_for_users[uid].append(msg)
def get_context(uid : str):
def get_context(uid: str):
if not uid in GlobalData.context_for_users:
GlobalData.context_for_users[uid] = []
return GlobalData.context_for_users[uid]
@ -126,35 +135,33 @@ def app_chat_clear():
print(f"Cleared context for {data['user_id']}")
return ""
@app.route("/chat", methods=['POST'])
def app_chat():
data = json.loads(flask.globals.request.get_data())
#print(data)
# print(data)
uid = data["user_id"]
if not data["text"][-1] in ['?', '', '.', '', ',', '', '!', '']:
data["text"] += ""
if USE_OPENAIGPT:
add_context(uid, True, data["text"])
#prompt = GlobalData.context_for_users[uid]
prompt = get_context(uid)
resp = CallOpenAIGPT(prompt=prompt)
#GlobalData.context_for_users[data["user_id"]] = (prompt + resp)
add_context(uid, False, resp[1])
#print(f"Prompt = {prompt}\nResponse = {resp[1]}")
elif USE_CHATGLM:
#prompt = GlobalData.context_for_users[uid]
prompt = get_context(uid)
resp = CallChatGLM(msg=data["text"], history=prompt)
add_context(uid, True, (data["text"], resp[1]))
else:
pass
# 使用ZhipuAI库调用模型生成回复
client = ZhipuAI(api_key="73bdeed728677bc80efc6956478a2315.VerNWJMCwN9L5gTi") # 请填写您自己的APIKey
response = client.chat.completions.create(
model="glm-4", # 请填写您要调用的模型名称
messages=[
{"role": "user", "content": data["text"]},
],
)
if resp[0] == GPT_SUCCESS:
return json.dumps({"user_id" : data["user_id"], "text" : resp[1], "error" : False, "error_msg" : ""})
# 获取模型的回复
resp = response.choices[0].message.content
if resp:
return json.dumps({"user_id": data["user_id"], "text": resp, "error": False, "error_msg": ""})
else:
return json.dumps({"user_id" : data["user_id"], "text" : "", "error" : True, "error_msg" : resp[1]})
return json.dumps({"user_id": data["user_id"], "text": "", "error": True, "error_msg": "模型未返回回复"})
@app.route("/draw", methods=['POST'])
def app_draw():
@ -167,8 +174,8 @@ def app_draw():
if prompt[i] == ':' or prompt[i] == '':
break
if i == len(prompt):
return json.dumps({"user_name" : data["user_name"], "filenames" : [], "error" : True, "error_msg" : "格式不对正确的格式是生成图片Prompt 或者 生成图片(宽 高 迭代次数 [图片最大数量(缺省1)])Prompt"})
return json.dumps({"user_name": data["user_name"], "filenames": [], "error": True,
"error_msg": "格式不对正确的格式是生成图片Prompt 或者 生成图片(宽 高 迭代次数 [图片最大数量(缺省1)])Prompt"})
match_args = re.match(GlobalData.GENERATE_PICTURE_ARG_PAT2, prompt[:i])
if not match_args is None:
@ -185,7 +192,8 @@ def app_draw():
NUM_PIC = 1
else:
if len(prompt[:i].strip()) != 0:
return json.dumps({"user_name" : data["user_name"], "filenames" : [], "error" : True, "error_msg" : "格式不对正确的格式是生成图片Prompt 或者 生成图片(宽 高 迭代次数 [图片最大数量(缺省1)])Prompt"})
return json.dumps({"user_name": data["user_name"], "filenames": [], "error": True,
"error_msg": "格式不对正确的格式是生成图片Prompt 或者 生成图片(宽 高 迭代次数 [图片最大数量(缺省1)])Prompt"})
else:
W = 768
H = 768
@ -193,12 +201,14 @@ def app_draw():
NUM_PIC = 1
if W > 2500 or H > 2500:
return json.dumps({"user_name" : data["user_name"], "filenames" : [], "error" : True, "error_msg" : "你要求的图片太大了,我不干了~"})
return json.dumps({"user_name": data["user_name"], "filenames": [], "error": True,
"error_msg": "你要求的图片太大了,我不干了~"})
if ITS > GlobalData.GENERATE_PICTURE_MAX_ITS:
return json.dumps({"user_name" : data["user_name"], "filenames" : [], "error" : True, "error_msg" : f"迭代次数太多了,不要超过{GlobalData.GENERATE_PICTURE_MAX_ITS}"})
return json.dumps({"user_name": data["user_name"], "filenames": [], "error": True,
"error_msg": f"迭代次数太多了,不要超过{GlobalData.GENERATE_PICTURE_MAX_ITS}"})
prompt = prompt[(i+1):].strip()
prompt = prompt[(i + 1):].strip()
prompts = re.split(GlobalData.GENERATE_PICTURE_NEG_PROMPT_DELIMETER, prompt)
prompt = prompts[0]
@ -210,31 +220,37 @@ def app_draw():
print(f"Generating {NUM_PIC} picture(s) with prompt = {prompt} , negative prompt = {neg_prompt}")
try:
if NUM_PIC > 1 and torch.backends.mps.is_available(): #Apple silicon上的bughttps://github.com/huggingface/diffusers/issues/363
return json.dumps({"user_name" : data["user_name"], "filenames" : [], "error" : True,
"error_msg" : "单prompt生成多张图像在Apple silicon上无法实现相关讨论参考https://github.com/huggingface/diffusers/issues/363"})
if NUM_PIC > 1 and torch.backends.mps.is_available(): # Apple silicon上的bughttps://github.com/huggingface/diffusers/issues/363
return json.dumps({"user_name": data["user_name"], "filenames": [], "error": True,
"error_msg": "单prompt生成多张图像在Apple silicon上无法实现相关讨论参考https://github.com/huggingface/diffusers/issues/363"})
images = sd_pipe(prompt=prompt, negative_prompt=neg_prompt, width=W, height=H, num_inference_steps=ITS, num_images_per_prompt=NUM_PIC).images[:NUM_PIC]
images = sd_pipe(prompt=prompt, negative_prompt=neg_prompt, width=W, height=H, num_inference_steps=ITS,
num_images_per_prompt=NUM_PIC).images[:NUM_PIC]
if len(images) == 0:
return json.dumps({"user_name" : data["user_name"], "filenames" : [], "error" : True, "error_msg" : "没有产生任何图像"})
return json.dumps(
{"user_name": data["user_name"], "filenames": [], "error": True, "error_msg": "没有产生任何图像"})
filenames = []
for i, img in enumerate(images):
img.save(f"latest-{i}.png")
filenames.append(f"latest-{i}.png")
return json.dumps({"user_name" : data["user_name"], "filenames" : filenames, "error" : False, "error_msg" : ""})
return json.dumps({"user_name": data["user_name"], "filenames": filenames, "error": False, "error_msg": ""})
except Exception as e:
return json.dumps({"user_name" : data["user_name"], "filenames" : [], "error" : True, "error_msg" : str(e)})
return json.dumps({"user_name": data["user_name"], "filenames": [], "error": True, "error_msg": str(e)})
@app.route("/info", methods=['POST', 'GET'])
def app_info():
return "\n".join([f"GPT模型{config_json['OpenAI-GPT']['GPT-Model'] if USE_OPENAIGPT else config_json['ChatGLM']['GPT-Model']}", f"Diffusion模型{config_json['Diffusion']['Diffusion-Model']}",
return "\n".join(
[f"GPT模型{config_json['OpenAI-GPT']['GPT-Model'] if USE_OPENAIGPT else config_json['ChatGLM']['GPT-Model']}",
f"Diffusion模型{config_json['Diffusion']['Diffusion-Model']}",
"默认图片规格768x768 RGB三通道", "Diffusion默认迭代轮数20",
f"使用半精度浮点数 : {'' if config_json['Diffusion'].get('UseFP16', True) else ''}",
f"屏蔽NSFW检查{'' if config_json['Diffusion']['NoNSFWChecker'] else ''}",
"清空上下文指令:重置上下文",
"生成图片指令:生成图片(宽 高 迭代次数):正面提示 换行写负面提示,其中(宽 高 迭代次数)和换行写的负面提示都是可以省略的"])
if __name__ == "__main__":
if USE_OPENAIGPT:

View File

@ -86,6 +86,13 @@ func main() {
// 注册消息处理函数
bot.MessageHandler = func(msg *openwechat.Message) {
go sendMessage(msg, self)
}
bot.Block()
}
func sendMessage(msg *openwechat.Message, self *openwechat.Self) {
if msg.IsTickledMe() {
msg.ReplyText("别拍了,机器人是会被拍坏掉的。")
return
@ -199,7 +206,4 @@ func main() {
}
}
}
bot.Block()
}