WeChatBot/bot.py

163 lines
6.4 KiB
Python
Raw Normal View History

2023-02-06 01:28:27 +08:00
from email.mime import image
from cv2 import grabCut
2023-02-05 21:27:35 +08:00
import flask
import requests
import json
import openai
import re
from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler
import torch
import argparse
ps = argparse.ArgumentParser()
ps.add_argument("--config", default="config.json", help="Configuration file")
args = ps.parse_args()
with open(args.config) as f:
config_json = json.load(f)
class GlobalData:
# OPENAI_ORGID = config_json[""]
OPENAI_APIKEY = config_json["OpenAI-API-Key"]
OPENAI_MODEL = config_json["GPT-Model"]
OPENAI_MODEL_TEMPERATURE = 0.66
OPENAI_MODEL_MAXTOKENS = 2048
context_for_users = {}
context_for_groups = {}
GENERATE_PICTURE_ARG_PAT = re.compile("(\(|)([0-9]+)[ \n\t]+([0-9]+)[ \n\t]+([0-9]+)(\)|)")
2023-02-06 01:28:27 +08:00
GENERATE_PICTURE_ARG_PAT2 = re.compile("(\(|)([0-9]+)[ \n\t]+([0-9]+)[ \n\t]+([0-9]+)[ \n\t]+([0-9]+)(\)|)")
2023-02-05 21:27:35 +08:00
GENERATE_PICTURE_NEG_PROMPT_DELIMETER = re.compile("\n+")
GENERATE_PICTURE_MAX_ITS = 200 #最大迭代次数
app = flask.Flask(__name__)
sd_pipe = StableDiffusionPipeline.from_pretrained(config_json["Diffusion-Model"], torch_dtype=torch.float32)
sd_pipe.scheduler = DPMSolverMultistepScheduler.from_config(sd_pipe.scheduler.config)
if torch.backends.mps.is_available():
sd_pipe = sd_pipe.to("mps")
elif torch.cuda.is_available():
sd_pipe = sd_pipe.to("cuda")
def send_text_to_user(user_id : str, text : str):
requests.post(url="http://localhost:11110/send_text",
data=json.dumps({"user_id" : user_id, "text" : text, "in_group" : False}))
def call_gpt(prompt : str):
try:
res = openai.Completion.create(
model=GlobalData.OPENAI_MODEL,
prompt=prompt,
max_tokens=GlobalData.OPENAI_MODEL_MAXTOKENS,
temperature=GlobalData.OPENAI_MODEL_TEMPERATURE)
if len(res["choices"]) > 0:
return res["choices"][0]["text"].strip()
else:
return ""
except:
return "上下文长度超出模型限制,请对我说\“重置上下文\",然后再试一次"
@app.route("/chat_clear", methods=['POST'])
def app_chat_clear():
data = json.loads(flask.globals.request.get_data())
GlobalData.context_for_users[data["user_id"]] = ""
print(f"Cleared context for {data['user_id']}")
return ""
@app.route("/chat", methods=['POST'])
def app_chat():
data = json.loads(flask.globals.request.get_data())
#print(data)
prompt = GlobalData.context_for_users.get(data["user_id"], "")
if not data["text"][-1] in ['?', '', '.', '', ',', '', '!', '']:
data["text"] += ""
prompt += "\n" + data["text"]
if len(prompt) > 4000:
prompt = prompt[:4000]
resp = call_gpt(prompt=prompt)
GlobalData.context_for_users[data["user_id"]] = (prompt + resp)
print(f"Prompt = {prompt}\nResponse = {resp}")
return json.dumps({"user_id" : data["user_id"], "text" : resp, "in_group" : False})
@app.route("/draw", methods=['POST'])
def app_draw():
data = json.loads(flask.globals.request.get_data())
prompt = data["prompt"]
i = 0
for i in range(len(prompt)):
if prompt[i] == ':' or prompt[i] == '':
break
if i == len(prompt):
2023-02-06 01:28:27 +08:00
return json.dumps({"user_name" : data["user_name"], "filenames" : [], "error" : True, "error_msg" : "格式不对正确的格式是生成图片Prompt 或者 生成图片(宽 高 迭代次数 [图片最大数量(缺省1)])Prompt"})
2023-02-05 21:27:35 +08:00
2023-02-06 01:28:27 +08:00
match_args = re.match(GlobalData.GENERATE_PICTURE_ARG_PAT2, prompt[:i])
2023-02-05 21:27:35 +08:00
if not match_args is None:
W = int(match_args.group(2))
H = int(match_args.group(3))
ITS = int(match_args.group(4))
2023-02-06 01:28:27 +08:00
NUM_PIC = int(match_args.group(5))
2023-02-05 21:27:35 +08:00
else:
2023-02-06 01:28:27 +08:00
match_args = re.match(GlobalData.GENERATE_PICTURE_ARG_PAT, prompt[:i])
if not match_args is None:
W = int(match_args.group(2))
H = int(match_args.group(3))
ITS = int(match_args.group(4))
NUM_PIC = 1
2023-02-05 21:27:35 +08:00
else:
2023-02-06 01:28:27 +08:00
if len(prompt[:i].strip()) != 0:
return json.dumps({"user_name" : data["user_name"], "filenames" : [], "error" : True, "error_msg" : "格式不对正确的格式是生成图片Prompt 或者 生成图片(宽 高 迭代次数 [图片最大数量(缺省1)])Prompt"})
else:
W = 768
H = 768
ITS = 50
NUM_PIC = 1
if W > 2500 or H > 2500:
return json.dumps({"user_name" : data["user_name"], "filenames" : [], "error" : True, "error_msg" : "你要求的图片太大了,我不干了~"})
2023-02-05 21:27:35 +08:00
2023-02-06 01:28:27 +08:00
if ITS > GlobalData.GENERATE_PICTURE_MAX_ITS:
return json.dumps({"user_name" : data["user_name"], "filenames" : [], "error" : True, "error_msg" : f"迭代次数太多了,不要超过{GlobalData.GENERATE_PICTURE_MAX_ITS}"})
2023-02-05 21:27:35 +08:00
prompt = prompt[(i+1):].strip()
prompts = re.split(GlobalData.GENERATE_PICTURE_NEG_PROMPT_DELIMETER, prompt)
prompt = prompts[0]
neg_prompt = None
if len(prompts) > 1:
neg_prompt = prompts[1]
2023-02-06 01:28:27 +08:00
print(f"Generating {NUM_PIC} picture(s) with prompt = {prompt} , negative prompt = {neg_prompt}")
try:
if NUM_PIC > 1 and torch.backends.mps.is_available(): #Apple silicon上的bughttps://github.com/huggingface/diffusers/issues/363
return json.dumps({"user_name" : data["user_name"], "filenames" : [], "error" : True,
"error_msg" : "单prompt生成多张图像在Apple silicon上无法实现相关讨论参考https://github.com/huggingface/diffusers/issues/363"})
images = sd_pipe(prompt=prompt, negative_prompt=neg_prompt, width=W, height=H, num_inference_steps=ITS, num_images_per_prompt=NUM_PIC).images[:NUM_PIC]
if len(images) == 0:
return json.dumps({"user_name" : data["user_name"], "filenames" : [], "error" : True, "error_msg" : "没有产生任何图像"})
filenames = []
for i, img in enumerate(images):
img.save(f"latest-{i}.png")
filenames.append(f"latest-{i}.png")
return json.dumps({"user_name" : data["user_name"], "filenames" : filenames, "error" : False, "error_msg" : ""})
except Exception as e:
return json.dumps({"user_name" : data["user_name"], "filenames" : [], "error" : True, "error_msg" : str(e)})
2023-02-05 21:27:35 +08:00
if __name__ == "__main__":
#openai.organization = GlobalData.OPENAI_ORGID
openai.api_key = GlobalData.OPENAI_APIKEY
app.run(host="0.0.0.0", port=11111)